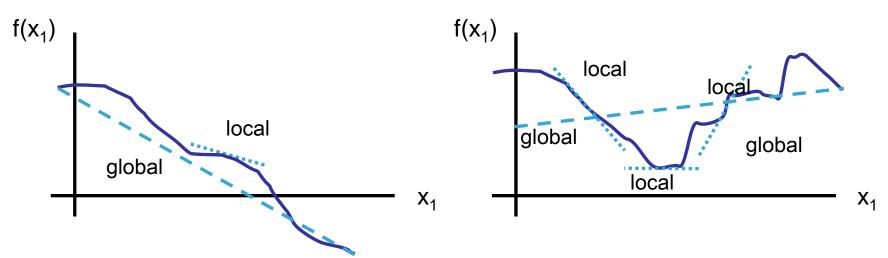
Exceptional service in the national interest

Dakota Sensitivity Analysis and Uncertainty Quantification, with Examples

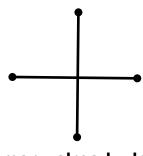
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Dakota Sensitivity Analysis (SA)

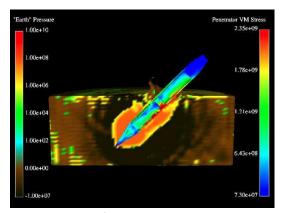
- SA goals and examples
- Global SA approaches and metrics available in Dakota
- Select Dakota examples for parameter studies and global SA


Why Perform Sensitivity Analysis?

- What? Understand code output variations as input factors vary
- Why? Identify most important variables and their interactions
 - Identify key model characteristics: smoothness, nonlinear trends, robustness
 - Provide a focus for resources
 - Data gathering and model development
 - Code development
 - Uncertainty characterization
 - Screening: Identity the most important variables, down-select for further UQ or optimization analysis
 - Can have the side effect of identifying code and model issues
 - Data can be used to construct surrogate models
- Dakota SA formalizes and generalizes one-off sensitivity studies you're likely already doing
- Provides richer global sensitivity analysis methods

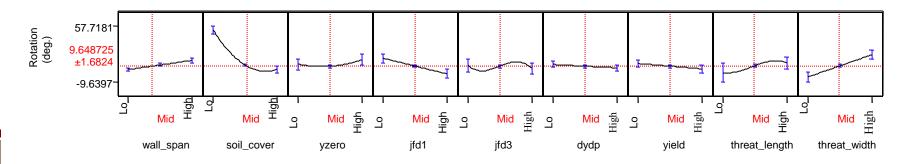

Sensitivity Analysis: Influence of Inputs on Outputs

Assess variations in f(x1) due to (small or large) perturbations in x1.


- Local sensitivities
 - Partial derivatives at a specific point in input space.
 - Given a specific x1, what is the slope at that point?
 - Can be estimated with finite differences
- Global sensitivities
 - Found via sampling and regression.
 - What is the general trend of the function over all values of x1?
 - Typically consider inputs uniformly over their whole range

many already do basic SA; perturb from nominal, see effect

Global Sensitivity Analysis Example: Earth Penetrator

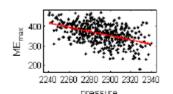


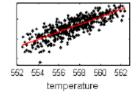
12 parameters describing target & threat uncertainty, including...

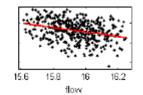
threat: width, length

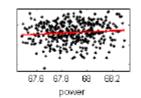
structure width (span)

- Notional model for illustration purposes only (http://www.sandia.gov/ASC/library/fullsize/penetrator.html)
- Underground target with external threat: assess sensitivity in target response to target construction and threat characteristics
- Response: angular rotation (φ) of target roof at mid-span
- Analysis: CTH Eulerian shock physics code; JMP stats
- Revealed most sensitive input parameters and nonlinear relationships

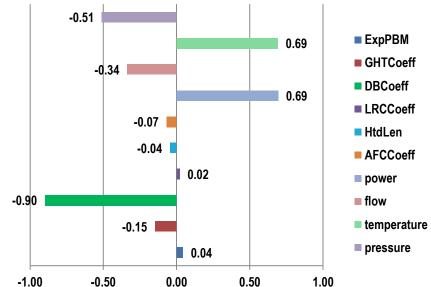



Global SA Example:


Sandia National Laboratories


Nuclear Reactor Thermal-Hydraulics Model

- Assess parameter influence on boiling rate, a key crud predictor
- Dakota correlation coefficients: strong influence of core operating parameters (pressure more important than previously thought)
- Dittus-Bolter correlation model may dominate model form sensitivities (also nonlinear effects of ExpPBM)
- Scatter plots help visualize trend in input/output relationships



parameter influence on number of boiling sites

sensitivity of mass evaporation rate (max) to operating parameters

Group Discussion Questions: Your Sensitivity Analysis Practice

- Do you currently perform sensitivity analysis or parameter perturbations?
- What are example SA questions you (could) ask in your domain?
- How do (would) you answer them?
- What measures of sensitivity, ranking, or importance are you most familiar with?
- What are the key challenges you face?

Cantilever Beam Model

Parameters:

L: length (in)

w: width (in)

t: thickness (in.)

 ρ : density (lb/ft³)

E: Young's modulus (lb/in²)

X: horizontal load (lb)

Y: vertical load (lb)

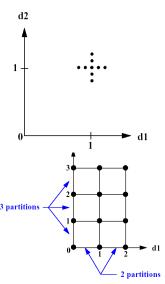
Responses:

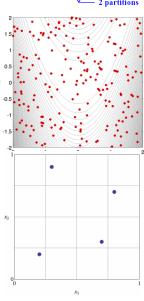
M: mass (lb)

S: stress (lb/in²)

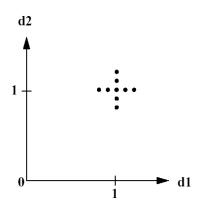
D: displacement (in)

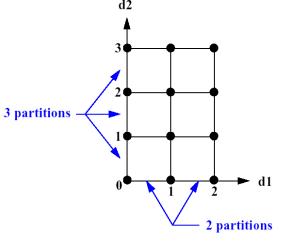
$$M = \rho * wt * \frac{L}{12^3}$$


$$S = \frac{600}{wt^2} Y + \frac{600}{w^2 t} X$$

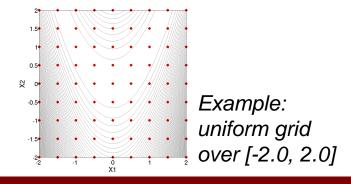

$$D = \frac{4L^3}{Ewt} \sqrt{\left(\frac{Y}{t^2}\right)^2 + \left(\frac{X}{w^2}\right)^2}$$

Global Sensitivity Analysis in Dakota


- Assess effect of input variables considered jointly over their whole range. Dakota process:
 - Specify variables: lower and upper bounds
 - Specify method: e.g., uniform random sampling
 - Specify responses: compute response value at each sample point
 - Run Dakota and analyze input/output relationships
 - Sample designs (methods) available:
 - Parameter studies: list, centered, grid, vector, user
 - Random sampling: Monte Carlo, Latin hypercube, Quasi-MC, CVT
 - DOE/DACE: Full-factorial, orthogonal arrays, Box-Behnken, CCD
 - Morris one-at-a-time
 - Sobol indices via variance-based decomposition, polynomial chaos
 - Metrics: trends, correlations, main/interaction effects, Sobol indices, importance factors/local sensitivities



Basic Dakota SA for Cantilever: Centered and Grid Parameter Studies

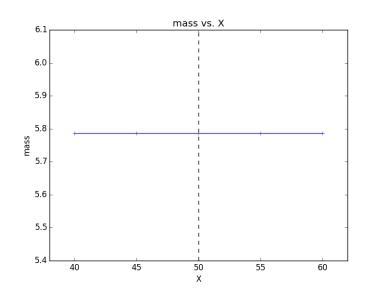


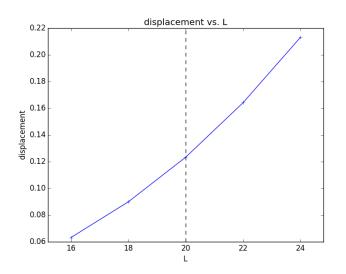
- Start at nominal values, perturb up and down in each coordinate direction
- Specify the parameter variations, which responses to study
- See Dakota input and output (following slides)

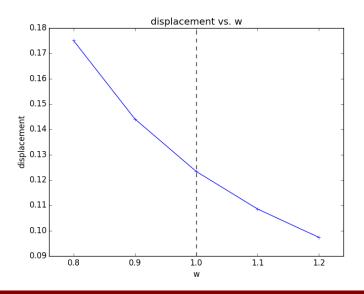
- What changes to Dakota input will instead perform the grid parameter study at left?
- Dakota Reference Manual helps with keyword choice...
- What are benefits/drawbacks of these methods?

Dakota Input File: Cantilever Centered Parameter Study

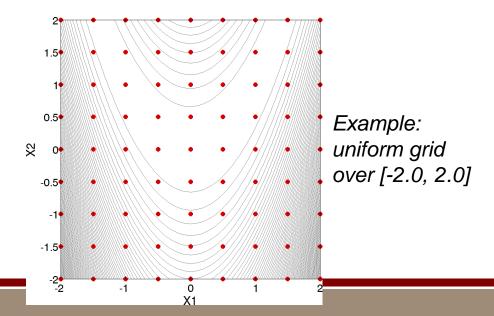

```
environment
  tabular data output precision 1e-16
method
  centered parameter study
    step vector 0.1 0.1 2.0
                10 1.e5 5. 10.
    steps per variable 2
                                              d2
variables
  active all
  continuous design = 3
    initial point 2*1.0
                          20.0
                            "+"
                                    "| "
                   "w"
    descriptors
  continuous state = 4
    initial state 500. 29.E+6 50. 100.
    descriptors
                   'p'
                          'E'
interface,
  fork
    analysis driver = 'driver.sh'
responses,
  num objective functions = 3
    response descriptors = 'mass' 'stress' 'displacement'
  no gradients
  no hessians
```


- Catalog variable/response sets to tabular file
- Algorithm configuration: steps in each variable
- Center point: initial point / initial state

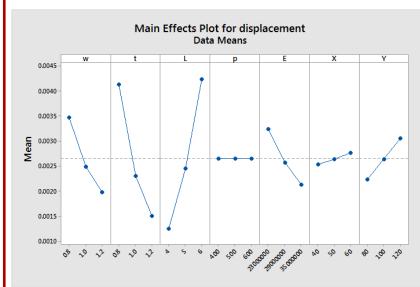

- How parameters are mapped to responses
- Responses from simulation


Results: Centered Parameter Study

- Python plots of Dakota tabular file
- Univariate effects of parameters on each response
- What do you observe?
- What are benefits/drawbacks?

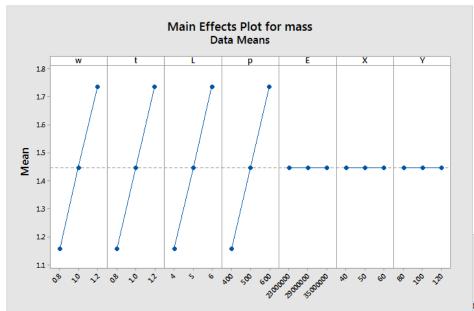


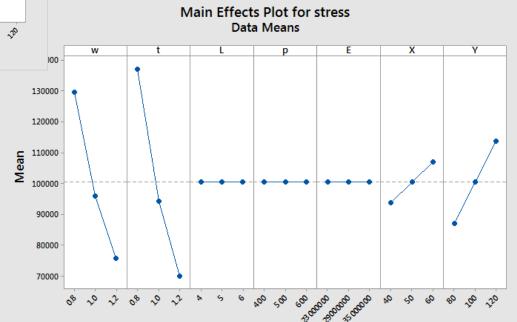
Exercise: Multi-dimensional Parameter Study


- Goal: understand how responses *area, stress, and displacement* vary with respect to the inputs *w* and *t* on a grid of points.
- Exercise: change previous input file to run the mod_cantilever computational model at a grid of points over [1.0, 4.0] using the multidim_parameter_study method
- Try 9 points in one dimension, 6 in the other
- See method and variable commands in Dakota reference manual
- What parts of the file did you have to change?

Dakota Input File and Results: Cantilever Multi-dimensional Parameter Study

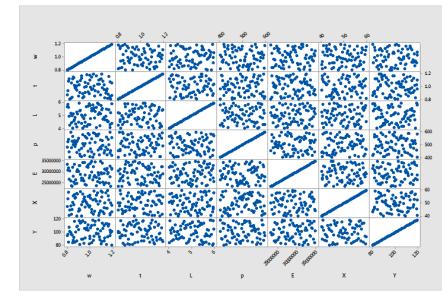

```
environment
  tabular data output precision 1e-16
method
  multidim parameter study
    partitions = 2 2 2 2 2 2 2
variables
  active all
  continuous design = 3
    upper bounds = 1.2 \ 1.2 \ 6.0
    lower bounds = 0.80.84.0
                                    "1"
    descriptors
  continuous state = 4
    upper_bounds = 600. 35.E+6 60. 120.
    lower bounds = 400.23.E+640.80.
    descriptors
interface,
fork
  analysis driver = 'driver.sh'
responses,
num objective functions = 3
    response descriptors = 'mass' 'stress' 'displacement'
no gradients
no hessians
```




Dakota tabular data plotted with Minitab

What are benefits/drawbacks?

Dakota Input File and Results: Cantilever Multi-dimensional Parameter Study

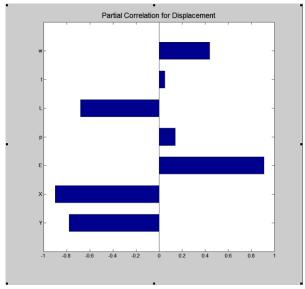


Workhorse SA Method: Random Sampling

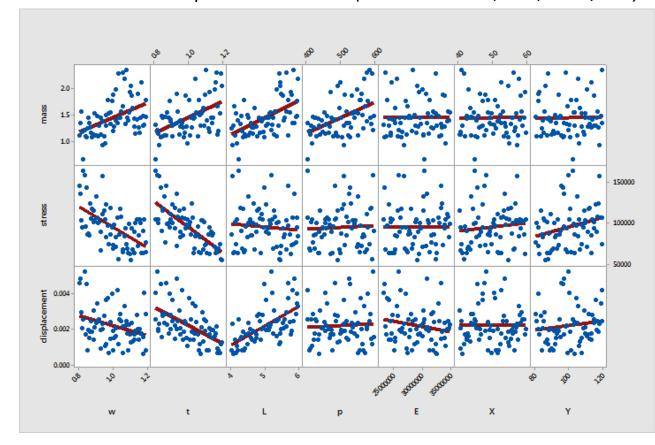
- Generate space filling design (typically Monte Carlo or Latin hypercube with samples = 2x or 10x number of variables)
- Run model at each point
- Analyze input/output relationships with
 - Correlation coefficients
 - Simple correlation: strength and direction of a linear relationship between variables
 - Partial correlation: like simple correlation but adjusts for the effects of the other variables
 - Rank correlations: simple and partial correlations performed on "rank" of data
 - Regression and resulting coefficients
 - Variance-based decomposition
 - Importance factors

Two-dimensional projections of LHD for Cantilever (plotted with Minitab)

Dakota Input File: Cantilever LHS Study

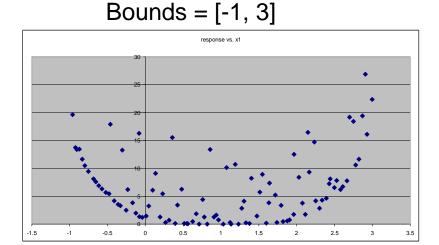

```
method
 sampling
 sample type lhs
 samples = 70
 seed = 3845
variables
  active all
 continuous design = 3
   upper_bounds = 1.2 1.2 6.0
   lower bounds = 0.8 0.8 4.0
                      "†" "|"
   descriptors "w"
 continuous state = 4
   upper bounds = 600. 35.E+6 60. 120.
    lower bounds = 400.23.E+640.80.
    descriptors 'p' 'E' 'X' 'Y'
interface
 fork
    analysis driver = 'driver.sh'
responses
 response functions = 3
 descriptors = 'mass' 'stress''displacement'
 no gradients no hessians
```

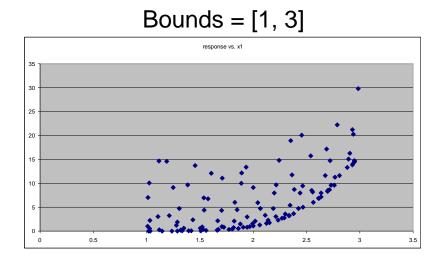
Global Sampling Results for Cantilever


Partial Correlation Matrix for Cantilever								
	mass	stress	displacement					
w	0.95	-0.96	-0.78					
t	0.95	-0.97	-0.90					
L	0.96	-0.17	0.91					
р	0.95	0.11	0.14					
E	-0.08	-0.13	-0.68					
Χ	-0.03	0.54	0.05					
Υ	0.12	0.82	0.44					

correlation coefficients from Dakota console output (colored w/ Excel)

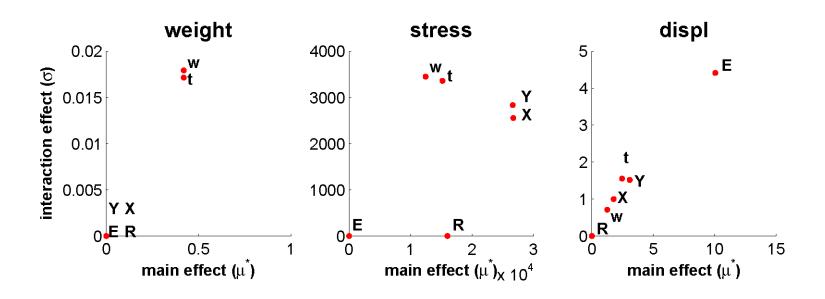
(plotted with Matlab)


Dakota tabular data plotted in Minitab (can use Matlab, JMP, Excel, etc.)



Group discussion

- What is expected, limited about this approach?
- What approaches would you take?
- What assumptions are we making? How would changing them affect results?



Morris One-at-a-Time (MOAT)

- Sample paths around global space in coordinate directions
- Give good measure of main (linear, first-order) and interaction / nonlinear effect for modest simulation budget
- How would you know how to configure Dakota to do this study?

Other SA Approaches Require Changing Method

Dakota Reference Manual guides in specifying keywords

```
method,
sampling
    sample_type lhs
    seed =52983
    samples = 100
```

LHS Sampling

```
method,
sampling
    sample_type lhs
    seed =52983
    samples = 500
    variance_based_decomp
```

Variance-based Decomposition using LHS Sampling

```
method,
    dace oas
    main_effects
    seed =52983
    samples = 500
```

Main Effects Analysis using Orthogonal Arrays

```
method,
    psuade_moat
    partitions = 3
    seed =52983
    samples = 100
```

Morris One-At-a-Time

Dakota Sensitivity Analysis Summary

- What? Understand code output variations as input factors vary; main effects and key parameter interactions.
- Why? Identify most important variables and their interactions
- How? What Dakota methods are relevant? What results?

Category	Dakota method names	univariate trends	correlations	modified mean, s.d.	main effects Sobol inds.	importance factors / local sensis	
Parameter studies	centered, vector, list	Р					
	grid		D		Р		
Sampling	sampling, dace lhs, dace random, fsu_quasi_mc, fsu_cvt with variance_based_decomp	Р	D		D		multi- purpose!
DACE (DOE-like)	dace {oas, oa_lhs, box_behnken, central_composite}		D		D		D: Dakota
MOAT	psuade_moat			D			P: Post- processing (3 rd party tools)
PCE, SC	polynomial_chaos, stoch_collocation				D	D	
Mean value	local_reliability					D	

Also see Dakota Usage Guidelines in User's Manual

Sensitivity Analysis References

- Saltelli A., Ratto M., Andres T., Campolongo, F., et al., Global Sensitivity Analysis:
 The Primer, Wiley, 2008.
- J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity analysis. Technical Report SAND99-2240, Sandia National Laboratories, Albuquerque, NM, 2000.
- Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. Design and analysis of computer experiments. Statistical Science 1989; 4:409–435.
- Oakley, J. and O'Hagan, A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. J Royal Stat Soc B 2004; 66:751–769.
- Dakota User's Manual
 - Parameter Study Capabilities
 - Design of Experiments Capabilities/Sensitivity Analysis
 - Uncertainty Quantification Capabilities (for MC/LHS sampling)
- Corresponding Reference Manual sections